a C 4 H 8 (OH) 2 + b O 2 = c CO 2 + d H 2 Create a System of Equations Create an equation for each element (C, H, O) where each term represents the number of atoms of the element in each reactant or product.

Access through your institutionHighlights•CeO2-Co(OH)2 was prepared through one-step electro-deposition strategy.•The content of oxygen vacancies increased by the introduction of CeO2 into Co(OH)2.•The electron environment of Co and Ce can be tuned by adjusting Co to Ce ratio.•The optimized CeO2-Co(OH)2 was active for HER and obtain highly active electrocatalyst for the whole electrochemical water splitting is of importance to generate hydrogen. Co(OH)2 is used as electrocatalyst towards OER, however, the performance can be improved further. Usually, to construct the interface and adjust the electronic environment of electrocatalysts are regarded as powerful ways to improve the activity. Herein, CeO2-Co(OH)2 sheets supported on copper foam (CF) are fabricated by electrodeposition method. The morphology and the electron structure of metals are adjusted by changing the molar ratio of Co to Ce, thus, resulting in different electrocatalytic activity. The optimal hybrids of CeO2-Co(OH)2 exhibits lower overpotentials of 188, 269 mV to reach 10 mA cm−2 towards HER and OER, respectively, and good stability. Notably, it is found that the electroactivity is extremely superior to that of bare CF as well as the counterparts in the literature. Also, we try to employ M(OH)2 (M = Fe, Ni) to substitute Co(OH)2 to investigate the effect of species of hydroxides on the electron interaction between CeO2 and hydroxides, the XPS results indicate that Ce and Co shows stronger electron interaction compared to other two control hydroxides. As electrocatalysts for alkaline full water splitting, CeO2-Co(OH)2 requires a cell voltage of V to drive 10 mA cm−2. Experimental results prove the advantages of the electron engineering and morphology double hydroxidesOxygen evolution reactionHydrogen evolution reactionElectrocatalysisCited by (0)View full text© 2022 Elsevier All rights reserved.

The reaction in question 2CaO(s) ==> 2Ca(s) + O 2 (g) is the reverse of the given equation, and it is also twice the number of moles of the original equation. The fact that is is the reverse, means we must change the sign of ∆H, thus making it positive. So, at this point it would be +635 kJ/mole. Abstract: Electrochemical water splitting is a clean technology that can store the intermittent renewable wind and solar energy in H2 fuels. However, large-scale H2 production is greatly hindered by the sluggish oxygen evolution reaction (OER) kinetics at the anode of a water electrolyzer. Although many OER electrocatalysts have been developed to negotiate this difficult reaction, substantial progresses in the design of cheap, robust, and efficient catalysts are still required and have been considered a huge challenge. Herein, we report the simple synthesis and use of α-Ni(OH)2 nanocrystals as a remarkably active and stable OER catalyst in alkaline media. We found the highly nanostructured α-Ni(OH)2 catalyst afforded a current density of 10 mA cm(-2) at a small overpotential of a mere V and a small Tafel slope of ~42 mV/decade, comparing favorably with the state-of-the-art RuO2 catalyst. This α-Ni(OH)2 catalyst also presents outstanding durability under harsh OER cycling conditions, and its stability is much better than that of RuO2. Additionally, by comparing the performance of α-Ni(OH)2 with two kinds of β-Ni(OH)2, all synthesized in the same system, we experimentally demonstrate that α-Ni(OH)2 effects more efficient OER catalysis. These results suggest the possibility for the development of effective and robust OER electrocatalysts by using cheap and easily prepared α-Ni(OH)2 to replace the expensive commercial catalysts such as RuO2 or IrO2....read moreAbstract: Ni-(oxy)hydroxide-based materials are promising earth-abundant catalysts for electrochemical water oxidation in basic media. Recent findings demonstrate that incorporation of trace Fe impurities from commonly used KOH electrolytes significantly improves oxygen evolution reaction (OER) activity over NiOOH electrocatalysts. Because nearly all previous studies detailing structural differences between α-Ni(OH)2/γ-NiOOH and β-Ni(OH)2/β-NiOOH were completed in unpurified electrolytes, it is unclear whether these structural changes are unique to the aging phase transition in the Ni-(oxy)hydroxide matrix or if they arise fully or in part from inadvertent Fe incorporation. Here, we report an investigation of the effects of Fe incorporation on structure–activity relationships in Ni-(oxy)hydroxide. Electrochemical, in situ Raman, X-ray photoelectron spectroscopy, and electrochemical quartz crystal microbalance measurements were employed to investigate Ni(OH)2 thin films aged in Fe-free and unpurified (reagent-grade)......read moreAbstract: Prussian blue, which typically has a three-dimensional network of zeolitic feature, draw much attention in recent years. Besides their applications in electrochemical sensors and electrocatalysis, photocatalysis, and electrochromism, Prussian blue and its derivatives are receiving increasing research interest in the field of electrochemical energy storage due to their simple synthetic procedure, high theoretical specific capacity, non-toxic nature as well as low price. In this review, we give a general summary and evaluation of the recent advances in the study of Prussian blue and its derivatives for batteries and supercapacitors, including synthesis, micro/nano-structures and electrochemical properties....read moreAbstract: Oxygen evolution reaction (OER) is an essential electrochemical reaction in water-splitting and rechargeable-metal-air-batteries to achieve clean energy production and efficient energy-storage. At first, this review discusses about the mechanism for OER, where an oxygen molecule is produced with the involvement of four electrons and OER intermediates but the reaction pathway is influenced by the pH. Then, this review summarizes the brief discussion on theoretical calculations, and those suggest the suitability of NiFe based catalysts for achieving optimal adsorption for OER intermediates by tuning the electronic structure to enhance the OER activity. Later, we review the recent advancement in terms of synthetic methodologies, chemical properties, density functional theory (DFT) calculations, and catalytic performances of several nanostructured NiFe-based OER electrocatalysts, and those include layered double hydroxide (LDH), cation/anion/formamide intercalated LDH, teranary LDH/LTH (LTH: Layered-triple-hydroxide), LDH with defects/vacancies, LDH integrated with carbon, hetero atom doped/core-shell structured/heterostructured LDH, oxide/(oxy)hydroxide, alloy/mineral/boride, phosphide/phosphate, chalcogenide (sulfide and selenide), nitride, graphene/graphite/carbon-nano-tube containing NiFe based electrocatalysts, NiFe based carbonaceous materials, and NiFe-metal-organic-framework (MOF) based electrocatalysts. Finally, this review summarizes the various promising strategies to enhance the OER performance of electrocatalysts, and those include the electrocatalysts to achieve ~1000 mA cm−2 at relatively low overpotential with significantly high stability....read moreAbstract: The active site for electrocatalytic water oxidation on the highly active iron(Fe)-doped β-nickel oxyhydroxide (β-NiOOH) electrocatalyst is hotly debated. Here we characterize the oxygen evolution reaction (OER) activity of an unexplored facet of this material with first-principles quantum mechanics. We show that molecular-like 4-fold-lattice-oxygen-coordinated metal sites on the (1211) surface may very well be the key active sites in the electrocatalysis. The predicted OER overpotential (ηOER) for a Fe-centered pathway is reduced by V relative to a Ni-centered one, consistent with experiments. We further predict unprecedented, near-quantitative lower bounds for the ηOER, of and V for pure and Fe-doped β-NiOOH(1211), respectively. Our hybrid density functional theory calculations favor a heretofore unpredicted pathway involving an iron(IV)-oxo species, Fe4+=O. We posit that an iron(IV)-oxo intermediate that stably forms under a low-coordination environment and the favorable discharge of......read more The morphology and microstructure of the Co/C composites were investigated by SEM and TEM analyses. As shown in Fig. S2 and Fig. 1 a-d, the four samples (Co/C-1, Co/C-2, Co/C-3 and Co/C-4) clearly displayed obvious hollow spherical structures, the sizes of which were approximately 200, 450, 600, and 1000 nm in diameter, respectively. covalt Posty: 58 Rejestracja: 3 mar 2011, o 10:00 Jak utlenia się Mn(OH)2 ? Witam. Tak jak w tytule - prosiłbym o pomoc w reakcji utleniania się wodorotlenku manganu (II) z tlenem. W skrypcie mam podane dwie różne reakcje i nie wiem która jest właściwa: 4Mn(OH)2 + O2 2Mn2O3 + 4H2O i 2Mn(OH)2 + O2 2MnO(OH)2 Jak rozumiem związki te są osadami i mają kolor brunatny ? acotusiewpisuje Posty: 15 Rejestracja: 9 lis 2011, o 09:31 Re: Jak utlenia się Mn(OH)2 ? Post autor: acotusiewpisuje » 9 lis 2011, o 09:41 2Mn(OH)2 + O2 → 2 MnO2·H2O Wodorotlenek manganu utlenia się dając uwodniony tlenek Manganu (IV). Mn(OH)2 - biały MnO2 - brunatnoczarny proszek Mn2O3 - czarny MnO(OH)2 chyba jest brunatny, ale ręki nie dam uciąć eszel Posty: 280 Rejestracja: 16 paź 2009, o 22:36 Re: Jak utlenia się Mn(OH)2 ? Post autor: eszel » 9 lis 2011, o 22:32 zapisów reakcji utleniania wodorotlenku manganu jest kilka (barwa jest na 100% brunatna) \(1) 2Mn(OH)_{2}+O_{2} ightarrow 2MnO_{2}+2H_{2}O 2) 2Mn(OH)_{2}+O_{2} ightarrow 2H_{2}MnO_{3} H_{2}MnO_{3}+Mn(OH)_{2} ightarrow MnMnO_{3}+2H_{2}O 3) 4Mn(OH)_{2}+O_{2} ightarrow 4MnO(OH)+2H_{2}O 4MnO(OH)+O{2} ightarrow 4MnO_{2}+2H_{2}O\) dla mnie ta ostatnia wersja jest najfajniejsza, chodzi tu o to, że Mn utlenia sie z II na III i potem na IV stopień, wszystkie zapisy są ok Burza Posty: 57 Rejestracja: 18 kwie 2012, o 20:41 Re: Jak utlenia się Mn(OH)2 ? Post autor: Burza » 18 kwie 2012, o 20:44 mam takie pytanie co do tej reakcji : 2Mn(OH)2 + O2 2MnO(OH)2 czy może one przebiec w taki sposób? Mn(OH)2 + Ag2O MnO(OH)2 + 2 Ag Kto jest online Użytkownicy przeglądający to forum: Obecnie na forum nie ma żadnego zarejestrowanego użytkownika i 0 gości

Word Equation. Butan-1-Ol + Dioxygen = Water + Carbon Dioxide. CH3(CH2)3OH + O2 = H2O + CO2 is a Combustion reaction where one mole of Butan-1-Ol [CH 3 (CH 2) 3 OH] and six moles of Dioxygen [O 2] react to form five moles of Water [H 2 O] and four moles of Carbon Dioxide [CO 2]

Zbilansowane Równania Chemiczne 2C2H4(OH)2 + 5O2 → 4CO2 + 6H2O Reaction Information Glikol Etylenowy + Ditlen = Dwutlenek Węgla + Woda Skorzystaj z poniższego kalkulatora do bilansowania równań chemicznych oraz ustaliania rodzajów reakcji (instrukcje). Instrukcje Aby zbilansować równanie chemiczne, wprowadź równanie reakcji chemicznej i naciśnij przycisk bilansowania. Zbilansowane równanie pojawi się powyżej. Używaj dużej litery jako pierwszego znaku pierwiastka i małej litery jako drugiego znaku. Przykłady: Fe, Au, Co, Br, C, O, N, F. Ładunki jonu nie są wspierane i będę ignorowane. Wymień grupy niezmienne w związkach chemicznych, aby uniknąć niejasności. Na przykład, C6H5C2H5 + O2 = C6H5OH + CO2 + H2O nie będzie bilansowane, ale XC2H5 + O2 = XOH + CO2 + H2O już tak. Stany związków chemicznych [like (s) (aq) or (g)] nie są wymagane. Możesz użyć nawiasów orkągłych () lub kwadratowych []. Przykłady C2H4(OH)2 + O2 = (CHO)2 + H2O C2H4(OH)2 + O2 = (COOH)2 + H2O C2H4(OH)2 + O2 = C + H2O C2H4(OH)2 + O2 = C2H2O4 + H2O C2H4(OH)2 + O2 = C2H4(COOH)2 + H2O C2H4(OH)2 + O2 = CH3COOH + H2O C2H4(OH)2 + O2 = CO + H2O C2H4(OH)2 + O2 = CO2 + H2 CrF3 + O2 = CrF4 + O2 AlH3O3 + SiO2 = Al2O5Si + H2O CH3COOH + SO3 = CH3COO + HSO3 AsCl3 + Zn + HCl = As + AsH3 + ZnCl2 Ostatnio Zbilansowane Równania KalkulatoryBilansowanie Równań ChemicznychKalkulator Reakcji StechiometrycznejKalkulator Ograniczającego OdczynnikaIonic Equation CalculatorRedox CalculatorKalkulator Wzorów EmpirycznychKalkulator Masy MolowejOxidation Number CalculatorBond Polarity CalculatorSignificant Figures CalculatorKalkulatory Równań ChemicznychIdeal Gas LawPrzelicznik JednostkiChemical Word SpellerFactorial CalculatorMole to Gram CalculatorStatistics Calculator The band at 370 nm can be assigned to the presence of Co(OH) 2 while the shoulder at 400 nm in ZX-6060-Co and ZX-n-Co samples can be assigned to the mixed cobalt oxide, Co 3 O 4 [51]. The
Cobalt(II) hydroxide react with oxygen 4Co(OH)2 + O2 4CoO(OH) + 2H2O [ Check the balance ] Cobalt(II) hydroxide react with oxygen to produce cobalt metahydroxide and water. This reaction takes place at a temperature near 100°C and an overpressure. Find another reaction Thermodynamic properties of substances The solubility of the substances Periodic table of elements Picture of reaction: Сoding to search: 4 CoOH2 + O2 cnd [ temp ] = 4 CoOOH + 2 H2O Add / Edited: / Evaluation of information: out of 5 / number of votes: 1 Please register to post comments
Step 3: Verify that the equation is balanced. Since there are an equal number of atoms of each element on both sides, the equation is balanced. 2 CH 4 + O 2 = 2 CO + 4 H 2. Balance the reaction of CH4 + O2 = CO + H2 using this chemical equation balancer! ReferencesChen, P. Z.; Zhou, T. P.; Xing, L. L.; Xu, K.; Tong, Y.; Xie, H.; Zhang, L. D.; Yan, W. S.; Chu, W. S.; Wu, C. Z. et al. Atomically dispersed iron-nitrogen species as electrocatalysts for bifunctional oxygen evolution and reduction reactions. Angew. Chem., Int. 56, 610– CAS Google Scholar Gao, R.; Yan, D. P. Recent development of Ni/Fe-based micro/nanostructures toward photo/electrochemical water oxidation. Adv. Energy Mater., in press, DOI: J. D.; Zheng, F.; Zhang, S. J.; Fisher, A.; Zhou, Y.; Wang, Z. Y.; Li, Y. Y.; Xu, B. B.; Li, J. T.; Sun, S. G. Interfacial interaction between FeOOH and Ni-Fe LDH to modulate the local electronic structure for enhanced OER electrocatalysis. ACS Catal. 2018, 8, 11342– CAS Google Scholar Ma, Y.; Chu, J. Y.; Li, Z. N.; Rakov, D.; Han, X. J.; Du, Y. C.; Song, B.; Xu, P. Homogeneous metal nitrate hydroxide nanoarrays grown on nickel foam for efficient electrocatalytic oxygen evolution. Small2018, 14, CAS Google Scholar Guo, Z. G.; Ye, W.; Fang, X. Y.; Wan, J.; Ye, Y. Y.; Dong, Y. Y.; Cao, D.; Yan, D. P. Amorphous cobalt-iron hydroxides as high-efficiency oxygen-evolution catalysts based on a facile electrospinning process. Inorg. Chem. Front. 2019, 6, 687– CAS Google Scholar Li, Y. Z.; Abbott, J.; Sun, Y. C.; Sun, J. M.; Du, Y. C.; Han, X. J.; Wu, G.; Xu, P. Ru nanoassembly catalysts for hydrogen evolution and oxidation reactions in electrolytes at various pH values. Appl. Catal. B: Environ. 2019, 258, CAS Google Scholar Banerjee, R.; Phan, A.; Wang, B.; Knobler, C.; Furukawa, H.; O’Keeffe, M.; Yaghi, O. M. High-throughput synthesis of zeolitic imidazolate frameworks and application to CO2 capture. Science2008, 319, 939– CAS Google Scholar Cao, F. F.; Zhao, M. T.; Yu, Y. F.; Chen, B.; Huang, Y.; Yang, J.; Cao, X. H.; Lu, Q. P.; Zhang, X.; Zhang, Z. C. et al. Synthesis of two-dimensional carbon nanocomposites using metal-organic framework nanosheets as precursors for supercapacitor application. J. Am. Chem. Soc. 2016, 138, 6924– CAS Google Scholar Hu, H.; Zhang, J. T.; Guan, B. Y.; Lou, X. W. Unusual formation of CoSe@carbon nanoboxes, which have an inhomogeneous shell, for efficient lithium storage. Angew. Chem., Int. 55, 9514– CAS Google Scholar Peng, S.; Bie, B. L.; Sun, Y. Z. S.; Liu, M.; Cong, H. J.; Zhou, W. T.; Xia, Y. C.; Tang, H.; Deng, H. X.; Zhou, X. Metal-organic frameworks for precise inclusion of single-stranded DNA and transfection in immune cells. Nat. Commun. 2018, 9, CAS Google Scholar Rungtaweevoranit, B.; Baek, J.; Araujo, J. R.; Archanjo, B. S.; Choi, K. M.; Yaghi, O. M.; Somorjai, G. A. Copper nanocrystals encapsulated in Zr-based metal-organic frameworks for highly selective CO2 hydrogenation to methanol. Nano Lett. 2016, 16, 7645– CAS Google Scholar Zhao, S. L.; Wang, Y.; Dong, J. C.; He, C. T.; Yin, H. J.; An, P. F.; Zhao, K.; Zhang, X. F.; Gao, C.; Zhang, L. J. et al. Ultrathin metal- organic framework nanosheets for electrocatalytic oxygen evolution. Nat. Energy2016, 1, CAS Google Scholar Duan, J. J.; Chen, S.; Zhao, C. Ultrathin metal-organic framework array for efficient electrocatalytic water splitting. Nat. Commun. 2017, 8, CAS Google Scholar Yang, J.; Zhang, F. Y.; Lu, H. Y.; Hong, X.; Jiang, H. L.; Wu, Y. E.; Li, Y. D. Hollow Zn/Co ZIF particles derived from core-shell ZIF-67@ZIF-8 as selective catalyst for the semi-hydrogenation of acetylene. Angew. Chem., Int. 54, 10889– CAS Google Scholar Li, Y. Z.; Niu S. Q.; Rakov, D.; Wang, Y.; Cabán-Acevedo, M.; Zheng, S. J.; Song, B.; Xu, P. Metal organic framework-derived CoPS/N-doped carbon for efficient electrocatalytic hydrogen evolution. Nanoscale2018, 10, 7291– CAS Google Scholar Han, M. K.; Yin, X. W.; Li, X. L.; Anasori, B.; Zhang, L. T.; Cheng, L. F.; Gogotsi, Y. Laminated and two-dimensional carbon-supported microwave absorbers derived from MXenes. ACS Appl. Mater. Interfaces2017, 9, 20038– CAS Google Scholar Li, Y.; Zhang, L.; Xiang, X.; Yan, D. P.; Li, F. Engineering of ZnCo-layered double hydroxide nanowalls toward high-efficiency electrochemical water oxidation. J. Mater. Chem. A2014, 2, 13250– CAS Google Scholar Xu, C. Y.; Li, Q. H.; Shen, Q. L.; Yuan, Z.; Ning, J. Q.; Zhong, Y. J.; Zhang, Z. Y.; Hu, Y. A facile sequential ion exchange strategy to synthesize CoSe2/FeSe2 double-shelled hollow nanocuboids for the highly active and stable oxygen evolution reaction. Nanoscale2019, 11, 10738– CAS Google Scholar Wu, J. J.; Zhang, D.; Wang, Y.; Wan, Y.; Hou, B. R. Catalytic activity of graphene-cobalt hydroxide composite for oxygen reduction reaction in alkaline media. J. Power Sources2012, 198, 122– CAS Google Scholar Wang, L.; Li, X.; Li, Q. Q.; Zhao, Y. H.; Che, R. C. Enhanced polarization from hollow cube-like ZnSnO3 wrapped by multiwalled carbon nanotubes: As a lightweight and high-performance microwave absorber. ACS Appl. Mater. Interfaces2018, 10, 22602– CAS Google Scholar Liu, H. D.; Chen, Z. L.; Zhou, L.; Li, X.; Pei, K.; Zhang, J.; Song, Y.; Fang, F.; Che, R. C.; Sun, D. L. Rooting bismuth oxide nanosheets into porous carbon nanoboxes as a sulfur immobilizer for lithium- sulfur batteries. J. Mater. Chem. A2019, 7, 7074– CAS Google Scholar Yao, Y.; Li, C.; Huo, Z. L.; Liu, M.; Zhu, C. X.; Gu, C. Z.; Duan, X. F.; Wang, Y. G.; Gu, L.; Yu, R. C. In situ electron holography study of charge distribution in high-κ charge-trapping memory. Nat. Commun. 2013, 4, CAS Google Scholar Rau, W. D.; Schwander, P.; Baumann, F. H.; Höppner, W.; Ourmazd, A. Two-dimensional mapping of the electrostatic potential in transistors by electron holography. Phys. Rev. Lett. 1999, 82, 2614– CAS Google Scholar Lin, Z. Y.; Waller, G.; Liu, Y.; Liu, M. L.; Wong, C. P. Facile synthesis of nitrogen-doped graphene via pyrolysis of graphene oxide and urea, and its electrocatalytic activity toward the oxygen-reduction reaction. Adv. Energy Mater. 2012, 2, 884– CAS Google Scholar Firmiano, E. G. S.; Cordeiro, M. A. L.; Rabelo, A. C.; Dalmaschio, C. J.; Pinheiro, A. N.; Pereira, E. C.; Leite, E. R. Graphene oxide as a highly selective substrate to synthesize a layered MoS2 hybrid electrocatalyst. Chem. Commun. 2012, 48, 7687– CAS Google Scholar Hu, W. H.; Shang, X.; Han, G. Q.; Dong, B.; Liu, Y. R.; Li, X.; Chai, Y. M.; Liu, Y. Q.; Liu, C. G. MoSx supported graphene oxides with different degree of oxidation as efficient electrocatalysts for hydrogen evolution. Carbon2016, 100, 236– CAS Google Scholar Sun, J. Q.; Yang, D. J.; Lowe, S.; Zhang, L. J.; Wang, Y. Z.; Zhao, S. L.; Liu, P. R.; Wang, Y.; Tang, Z. Y.; Zhao, H. J. et al. Sandwich-like reduced graphene oxide/carbon black/amorphous cobalt borate nano-composites as bifunctional cathode electrocatalyst in rechargeable zinc-air batteries. Adv. Energy Mater. 2018, 8, CAS Google Scholar Yan, C. S.; Fang, Z. W.; Lv, C. D.; Zhou, X.; Chen, G.; Yu, G. H. Significantly improving lithium-ion transport via conjugated anion intercalation in inorganic layered hosts. ACS Nano2018, 12, 8670– CAS Google Scholar Liu, X.; Wang, L.; Yu, P.; Tian, C. G.; Sun, F. F.; Ma, J. Y.; Li, W.; Fu, H. G. A stable bifunctional catalyst for rechargeable zinc-air batteries: Iron-cobalt nanoparticles embedded in a nitrogen-doped 3D carbon matrix. Angew. Chem., Int. 57, 16166– CAS Google Scholar Yan, J.; Fan, Z. J.; Sun, W.; Ning, G. Q.; Wei, T.; Zhang, Q.; Zhang, R. F.; Zhi, L. J.; Wei, F. Advanced asymmetric supercapacitors based on Ni(OH)2/graphene and porous graphene electrodes with high energy density. Adv. Funct. Mater. 2012, 22, 2632– CAS Google Scholar Yang, J.; Yu, C.; Hu, C.; Wang, M.; Li, S. F.; Huang, H. W.; Bustillo, K.; Han, X. T.; Zhao, C. T.; Guo, W. et al. Surface-confined fabrication of ultrathin nickel cobalt-layered double hydroxide nanosheets for high-performance supercapacitors. Adv. Funct. Mater. 2018, 28, CAS Google Scholar Pei, T.; Zhang, Z. Q.; Li, B. H.; Vinu, M.; Lin, C. H.; Lee, S. Raman observation of the “volcano curve” in the formation of carbonized metal-organic frameworks. J. Phys. Chem. C2017, 121, 22939– CAS Google Scholar Ye, F.; Song, Q.; Zhang, Z. C.; Li, W.; Zhang, S. Y.; Yin, X. W.; Zhou, Y. Z.; Tao, H. W.; Liu, Y. S.; Cheng, L. F. et al. Direct growth of edge-rich graphene with tunable dielectric properties in porous Si3N4 ceramic for broadband high-performance microwave absorption. Adv. Funct. Mater. 2018, 28, CAS Google Scholar Liu, X. L.; Wu, J. J.; Huang, X. L.; Liu, Z. W.; Zhang, Y.; Wang, M.; Che, R. C. Predominant growth orientation of cathode materials produced by the NaOH compound molten salt method and their enhanced electrochemical performance. J. Mater. Chem. A2014, 2, 15200– CAS Google Scholar Li, S. S.; Zhao, Y. H.; Liu, Z. W.; Yang, L. T.; Zhang, J.; Wang, M.; Che, R. C. Flexible graphene-wrapped carbon nanotube/graphene@ MnO2 3D multilevel porous film for high-performance lithium-ion batteries. Small2018, 14, CAS Google Scholar Shang, L.; Yu, H. J.; Huang, X.; Bian, T.; Shi, R.; Zhao, Y. F.; Waterhouse, G. I. N.; Wu, L. Z.; Tung, C. H.; Zhang, T. R. Well-dispersed ZIF-derived Co,N-Co-doped carbon nanoframes through mesoporous-silica-protected calcination as efficient oxygen reduction electrocatalysts. Adv. Mater. 2016, 28, 1668– CAS Google Scholar Arif, M.; Yasin, G.; Shakeel, M.; Mushtaq, M. A.; Ye, W.; Fang, X. Y.; Ji, S. F.; Yan, D. P. Hierarchical CoFe-layered double hydroxide and g-C3N4 heterostructures with enhanced bifunctional photo/ electrocatalytic activity towards overall water splitting. Mater. Chem. Front. 2019, 3, 520– CAS Google Scholar Kang, B. K.; Im, S. Y.; Lee, J.; Kwag, S. H.; Kwon, S. B.; Tiruneh, S.; Kim, M. J.; Kim, J. H.; Yang, W. S.; Lim, B. et al. In-situ formation of MOF derived mesoporous Co3N/amorphous N-doped carbon nanocubes as an efficient electrocatalytic oxygen evolution reaction. Nano Res. 2019, 12, 1605– Google Scholar Jiang, Y.; Deng, Y. P.; Fu, J.; Lee, D. U.; Liang, R. L.; Cano, Z. P.; Liu, Y. S.; Bai, Z. Y.; Hwang, S.; Yang, L. et al. Interpenetrating triphase cobalt-based nanocomposites as efficient bifunctional oxygen electrocatalysts for long-lasting rechargeable Zn-air batteries. Adv. Energy Mater. 2018, 8, CAS Google Scholar Qiao, M. T.; Lei, X. F.; Ma, Y.; Tian, L. D.; He, X. W.; Su, K. H.; Zhang, Q. Y. Application of yolk-shell Fe3O4@N-doped carbon nanochains as highly effective microwave-absorption material. Nano Res. 2018, 11, 1500– CAS Google Scholar Gao, R.; Yan, D. P. Fast formation of single-unit-cell-thick and defect-rich layered double hydroxide nanosheets with highly enhanced oxygen evolution reaction for water splitting. Nano Res. 2018, 11, 1883– CAS Google Scholar Bao, J.; Wang, Z. L.; Xie, J. F.; Xu, L.; Lei, F. C.; Guan, M. L.; Huang, Y. P.; Zhao, Y.; Xia, J. X.; Li, H. M. The CoMo-LDH ultrathin nanosheet as a highly active and bifunctional electrocatalyst for overall water splitting. Inorg. Chem. Front. 2018, 5, 2964– CAS Google Scholar Zou, H. Y.; He, B. W.; Kuang, P. Y.; Yu, J. G.; Fan, K. Metal-organic framework-derived nickel-cobalt sulfide on ultrathin mxene nanosheets for electrocatalytic oxygen evolution. ACS Appl. Mater. Interfaces2018, 10, 22311– CAS Google Scholar Shi, P. C.; Yi, J. D.; Liu, T. T.; Li, L.; Zhang, L. J.; Sun, C. F.; Wang, Y. B.; Huang, Y. B.; Cao, R. Hierarchically porous nitrogen-doped carbon nanotubes derived from core-shell ZnO@zeolitic imidazolate framework nanorods for highly efficient oxygen reduction reactions. J. Mater. Chem. A2017, 5, 12322– CAS Google Scholar Pan, Y.; Sun, K. A.; Liu, S. J.; Cao, X.; Wu, K. L.; Cheong, W. C.; Chen, Z.; Wang, Y.; Li, Y.; Liu, Y. Q. et al. Core-shell ZIF-8@ ZIF-67-derived CoP nanoparticle-embedded N-doped carbon nanotube hollow polyhedron for efficient overall water splitting. J. Am. Chem. Soc. 2018, 140, 2610– CAS Google Scholar Feng, J. X.; Xu, H.; Dong, Y. T.; Ye, S. H.; Tong, Y. X.; Li, G. R. FeOOH/Co/FeOOH hybrid nanotube arrays as high-performance electrocatalysts for the oxygen evolution reaction. Angew. Chem., Int. 55, 3694– CAS Google Scholar Man, I. C.; Su, H. Y.; Calle-Vallejo, F.; Hansen, H. A.; Martínez, J. I.; Inoglu, N. G.; Kitchin, J.; Jaramillo, T. F.; Nørskov, J. K.; Rossmeisl, J. Universality in oxygen evolution electrocatalysis on oxide surfaces. ChemCatChem2011, 3, 1159– CAS Google Scholar Jin, H. Y.; Mao, S. J.; Zhan, G. P.; Xu, F.; Bao, X. B.; Wang, Y. Fe incorporated α-Co(OH)2 nanosheets with remarkably improved activity towards the oxygen evolution reaction. J. Mater. Chem. A2017, 5, 1078– CAS Google Scholar Jiao, W. L.; Chen, C.; You, W. B.; Zhang, J.; Liu, J. W.; Che, R. C. Yolk-shell Fe/Fe4N@Pd/C magnetic nanocomposite as an efficient recyclable ORR electrocatalyst and SERS substrate. Small2019, 15, CAS Google Scholar Download references rIpQJ6H.
  • 63vk7wbla5.pages.dev/252
  • 63vk7wbla5.pages.dev/11
  • 63vk7wbla5.pages.dev/299
  • 63vk7wbla5.pages.dev/335
  • 63vk7wbla5.pages.dev/174
  • 63vk7wbla5.pages.dev/390
  • 63vk7wbla5.pages.dev/89
  • 63vk7wbla5.pages.dev/224
  • 63vk7wbla5.pages.dev/195
  • co oh 2 o2